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Cellulase is a biocatalyst that hydrolyzes cellulosic biomass and is considered a major group of industrial enzymes for its ap-
plications. Extensive work has been done on microbial cellulase but fungi are considered a novel strain for their maximum
cellulase production. Production cost and novel microbial strains are major challenges for its improvement where cheap agro
wastes can be essential sources of cellulose as substrates. Te researcher searches for more cellulolytic microbes from natural
sources but the production level of isolated strains is comparatively low. So genetic modifcation or mutation can be employed for
large-scale cellulase production before optimization. After genetic modifcation than in silicomolecular modeling can be evaluated
for substrate molecule’s binding afnity. In this review, we focus not only on the conventional methods of cellulase production but
also on modern biotechnological approaches applied to cellulase production by a sequential study on common cellulase-
producing microbes, modifed microbes, culture media, carbon sources, substrate pretreatment process, and the importance of
optimum pH and temperature on fermentation. In this review, we also compare diferent cellulase activity determination
methods. As a result, this review provides insights into the interrelationship between the characteristics of optimizing diferent
culture conditions, genetic modifcation, and in silico enzyme modeling for the production of cellulase enzymes, which may aid in
the advancement of large-scale integrated enzyme manufacturing of substrate-specifc enzymes.

1. Introduction

Te planet’s most abundant biomass is cellulose, a linear
polysaccharide of D-glucose subunits. Tis cellulosic poly-
mer creates 1, 4-glycosidic linkages between individual
glucose residues [1] and a primary component of the plant
cell wall [2]. Cellulase is an enzyme family that hydrolyzes
cellulose [3], also known as carbohydrate-active enzymes
(CAZyme) [4], with biotechnological potential in a variety of
industries including food, textile, animal feed, brewing,
agriculture, biomass refning, pulp, and paper [5–8]. It
occupies the third most signifcant industrial enzyme on the
worldwide market (i.e., ≈15%) after amylase (≈25%) and

protease (≈18%). Cellulase enzymes are classifed into three
types: endoglucanase (endo-1, 4-D-glucanase, EG, and EC
three.2.1.4); exoglucanase (exo-1, 4--D-glucanase, CBH, and
EC three.2.1.91); -glucosidase (1, 4--D-glucanase, BG, and
EC three.2.1 [9, 10]. Teir high production cost and low
yielding capacity are the major problems for industrial
applications [11], but an efective and proftable enzymatic
hydrolysis process must be economical [12]. Renewable
carbon sources and noble microorganisms are major con-
tributors to cellulase production [13]. Te lignocellulosic
materials, for example, wood, waste paper, corn cob, wheat
bran, waste paper, sludge [12, 14], sugar cane bagasse [15],
wheat straw [16–18], aspen wood, willow [19], and waste
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newspaper [20, 21] are efective carbon sources for this
enzyme. So cheap biomass resources may signifcantly serve
cellulase production, decreasing production prices [22].

Enzymes are mostly produced by microorganisms that can
be cultured in large quantities within a short period [23]. So the
use of eco-friendly microorganisms for lignocellulosic material
pretreatment is currently gainingmuch attention in the industry
[24]. Bacteria, fungi, and actinomycetes are capable of hydro-
lyzing cellulosic materials.Te kingdom fungi include the genus
like Aspergillus, Penicillium, Chaetomium, Trichoderma, Fusa-
rium, and Alternaria. [25] Cellulolytic bacteria include Cellu-
lomonas, Cellvibrio, Pseudomonas sp. Bacillus, and Micrococcus
[26, 27]. Fungi are energetic decomposers and are probably
responsible for 80% of the polysaccharide breakdown in the
world [28]. So, these fungi can be the preferred source of cel-
lulase for commercial purposes because they release large
amounts of cellulase into the culture medium. Although there
are a signifcant number of fungi that generate cellulase enzymes,
only a handful have been thoroughly examined since they
produce considerable amounts of these extracellular enzymes
[29]. Te fungal cellulases are less complex extracellular that
used to be more rapidly cloned, whereas Trichoderma reesei is
a commonly cited mesophilic flamentous Ascomycota fungus
[30] and its industrial enzyme titers above 100g/l [31]. To in-
crease the production of enzymes and cellulose hydrolysis, it is
crucial to modify the strains through random mutagenesis.
Heavy ion irradiation has been efectively employed for the
mutation breeding of microorganisms to develop novel strains
with industrial application potential and produced a signifcant
number of outstanding mutants [32]. Solid-state fermentation,
Batch fermentation, and Submerged fermentation were applied
for the production of cellulase enzyme [33–35]. Solid-state
fermentation (SSF) is gaining popularity as a cost-efective
and equally valuable method for the bioconversion of ligno-
cellulosic material utilizing cellulolytic bacteria [36, 37]. In
microbial cultures, cellulase production is strongly reliant on
growth, and several variables impact productivity [38]. Te key
deciding parameters for cellulase synthesis are believed to in-
clude carbon and nitrogen supplies, temperature, pH, and
dissolved oxygen in liquid broth [39, 40]. With several appli-
cations in protein therapies, biocatalysts, bioengineering, and
other biomedical felds, enzyme design is a signifcant area of
active research [41]. Experimental and computational meth-
odologies can be combined to produce more efective industrial
enzymes by amplifying and completing experimental results
[42]. For this enzyme class, however, we only have a limited
grasp of their structure, dynamics, and enzymatic function. So
this review highlights the potential utilization ofmicroorganisms
for cellulase production, strain improvement by mutagenesis to
enhance enzyme production, molecular modeling, factors af-
fecting enzyme production, and its application in diferent
industries.

2. CAZy Database and Cellulase
Involved in CAZymes

All enzymes engaged in the alterations, breakdown, or
biosynthesis of carbohydrates and their derivatives are re-
ferred to as carbohydrate-active enzymes (CAZymes) [43].

After 25 years of continuous research, the classifcation of
carbohydrate-active enzymes (CAZymes) is now divided
into several hundred distinct enzyme protein families [44].
All known CAZymes are categorized by the CAZy database
and related bioinformatics tools into the following classes:
glycosyl transferases (GTs), polysaccharide lyases (PLs),
carbohydrate esterases (CEs), glycoside hydrolases (GHs),
and auxiliary activities (AAs) [44, 45]. Lignocellulosic plant
biomass can be broken down into simple sugars and then
transformed into biofuels and other products by the use of
CAZymes such as cellulases and xylanases [46]. In several
sectors, CAZymes produced by microorganisms, particu-
larly fungi, are employed. Finding the best candidate for
a fungus, however, is an expensive and time-consuming
process. In this regard, the “CAZymes Based Ranking of
Fungi (CBRF)” web database has been created for sorting
and choosing an optimum fungal candidate based on their
genome-wide distribution of CAZymes [47]. Te present
CAZy database, which mostly lists catalytic domains of
carbohydrates-active enzymes, is related physically
(CAZymes). It was frst developed in 1991 as a categorization
for glycoside hydrolases (GH), and at the moment, this
component of CAZy accounts for the majority of it, with 172
GH families [48]. Maintaining and updating the family
categorization of this class of enzymes, classifying freshly
available sequences from GenBank and the Protein Data
Bank, and capturing and presenting functional information
for each family are the three main responsibilities of the
CAZy curators [49].

3. Common Cellulolytic Microbes

Cellulolytic microbes primarily destroy carbohydrates and
are unable to use lipids and proteins as energy sources for
metabolism and development. A wide range of carbohy-
drates may be used to make cellulases by a variety of mi-
croorganisms. In suitable fermentation circumstances,
bacteria can create cellulase enzymes by breaking down
cellulosic materials [50].

Tese microorganisms indicated fungi, bacteria, and
actinomycetes groups. Mawadza et al., and Wood [51, 52]
reported that aerobic bacterial species like Cytophaga, Cel-
lulomonas, and Cellovibrio can degrade cellulosic materials
and produce this crucial enzyme, whereas some other
studies reported that the efcient cellulase-producing fungi
species including Trichoderma, Penicillium, Fusarium,
Alternaria, Aspergillus, and Cladosporium. Te fungi are
responsible for 80% breakdown of cellulose, whereas
cellulase-producing fungi are subdivided into two groups
such as aerobic and anaerobic fungi [53]. Te adaptive
nature and extracellular characteristics of aerobic fungi are
generally ideal for producing most of the cellulases used in
industry [54]. Trichoderma reesei is the most extensively
researched fungus and can convert both wanted and native
cellulose to glucose. Due to researchers suggested that the
maximum expensively intentional aerobic fungus is T. reesei
which has the highest ability to hydrolyze local cellulose
[55, 56] and other microbes. Te previously reported
cellulase-producing fungi, bacteria, and actinomycetes are
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given in Table 1, and a common method of microbial cel-
lulase producing given in Figure 1. However, strains that
have undergone genetic modifcation are capable of pro-
ducing cellulase in comparatively greater quantities [37].

4. Genetically Modified Microbes

Since 1990, genetically modifed microbes were used in
industrial production. A good strain is selected based on
targeted physiological properties and functionality
which should be high product yield capable and resistant
to environmental stress [82]. Overexpression of the
cellulase gene has been achieved by a variety of genetic
approaches. Various microbial strains such as Tricho-
derma reesei, Saccharomyces cerevisiae, and Bacillus
subtilis have been genetically modifed for gene ex-
pression. When modifed L. plantarum was cultured in
a bioreactor its cellulolytic activity was 33.4 U/mg.
T. reesei was randomly altered at Rutgers University,
resulting in the strain RUT-C30, which demonstrated
a 20-fold increase in cellulase secretion. According to
Adsul et al., [83], mutant T. reesei RUT-C30 is one of the
most widely used fungal strains for commercial cellulase
production. Bacillus pumilus was randomly altered,
resulting in cellulase yields four times greater than the
wild-type strain [84]. Te Aspergillus was subjected to
irradiation of Co60 and UV treatments. Aspergillus sp.
XTG-4 mutant generated 19 times more than the wild-
type strain [85]. Although the fungus Macrophomina
phaseolina generated EG, site-directed mutagenesis was
used to create enzymes that needed novel substrates by
modifying conserved sections of this enzyme family [86].
Genetic engineering can be used to manipulate micro-
organisms for the production of high metabolites, but
due to the inherent complexity of the organism, it may
not be as simple as one might think. Nakari–Setälä et al.
[87], reported that cre1 was eliminated or replaced by
increased enzyme production and may serve as an ef-
fective target gene in manipulating T. reesei to enhance
enzyme production.

5. Molecular Modeling

Currently, researchers are focusing on the bulk production
of industrially relevant enzymes with signifcant bio-
technological applications using various in silico method-
ologies such as docking, molecular dynamics simulation,
protein modeling, genetic engineering, metagenomics, and
protein engineering on cellulase enzymes [88]. Te current
study focuses on computer-assisted modeling, which is
a vital strategy for evaluating a small molecule’s binding
afnity at the binding site of its macromolecular target. Te
protein-ligand interaction is the most exciting example due
to its industrial applications. Te energy scoring function is
used to score the ligands based on the protein structure
between them, and the posture with the lowest energy score
is deemed the best match. Selvam et al. [89], reported the
binding efciency of the Acinetobacter cellulase enzyme.Te
binding energies of the four polysaccharide subunits, cel-
lobiose, cellotetraose, cellotetriose, and laminaribiose, are
−6.15 kJ/mol, −7.88 kJ/mol, −6.16 kJ/mol, and −6.6.72 kJ/
mol, respectively. Tese docking studies showed that cel-
lulase has a higher potential than cellotetraose as a substrate
for high yields of ethanol. Hoda et al. [90], an in silico
structure, function, and phylogenetic analysis of cellulase
from the bacterium Ruminococcus albus was performed.
Tey obtained the R. albus cellulase protein sequence from
the UniProt database and the 3D structure was predicted by
homology modeling. Tamboli et al. [91], in silico physico-
chemical analysis of cellulase enzymes of the fungi Tricho-
derma and Aspergillus were performed. Teir study found
that the content of secondary structures such as alpha helices
and random coils predominates in the 3D conformation of
these fungal cellulases. According to the molecular docking
study conducted in their study, A. Niger cellulase residues
Glu160, Trp200, and Tr201, and T. Longibrachiatum
Tyr168, Tyr192, Gln196, and Asp220 were found to be in-
volved in the interaction with substrate cellulose. In their
study, Lugani, 2017 published various Bacillus sp.Te amino
acid sequence of cellulase was also analyzed [92]. Te cat-
alytic reaction depends on the structure of the enzyme.

Table 1: Name of cellulase-producing microorganisms.

Group Genus Species References

Fungi

Trichoderma T. reesei, T. branchiatum, T. viride, T. koningii, T. longibrachiatum, T. harzianum,
T. atroviride [12, 37]

Aspergillus A. niger, A. nidulans, A. fumigatus, A. oryzae, A. oryzae, A. terreus [57–61]
Fusarium F. solani, F. oxysporum [62, 63]
Humicola H. insolens, H. grisea [64]
Penicillium P. brasilianum, P. occitanis, P. decumbans, P. funiculosum [65, 66]
Others S. rolfsii, I. lacteus, A. aculeatus, S. cellulophilum, A. cellulolyticus, M. albomyces [67–69]

Bacteria

Acinetobacter A. junii, A. anitratus [70]
Bacillus B. subtilis, B. pumilus, B. amyloliquefaciens, B. licheniformis, B. circulan, B. fexus [71, 72]

Clostridium C. thermocellum, C. cellulolyticum, C. acetobutylium, C. papyrosolvens [73]

Others A. cellulolyticus, Anoxybacillus sp., P. cellulose, T. fusca, A. cellulolyticus, R. marinus,
R. albus [74–77],

Actinomycetes
Cellulomonas C. fmi, C.biazotea, C. uda [78]
Streptomyces S. drozdowiczii, S. lividans, [79, 80]

Termomonospora T. fusca, T. curvata [81]
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Molecular dynamics is an important method for de-
termining the dynamics of protein structure, especially the
loops or domains involved in the catalytic activity of en-
zymes. Paul et al. [93], studied the structural properties of
various microbial cellulases based on the structures pre-
dicted by molecular modeling methods. Tey also used
molecular docking between receptor proteins and ligands to
present molecular interactions with substrate molecules and
their networks. To compare the catalytic activity of wild-type
and mutant enzymes developed using in silico technology,
the bond energy between the enzyme and the substrate was
computed. Teir research suggests that cellulose hydrolysis
can be improved for larger bioethanol outputs. Ali et al. [94],
also found that uncovering Cel6A variations from Ter-
mobifda fusca utilizing protein domain engineering and
molecular dynamics investigations improved their enzy-
matic activity. Computer-based diferent microbial cellulase
enzyme is given in Figure 2.

6. Microbial Culture Media Preparation

Media is a primary factor for microbial growth and enzyme
production. Most of the research suggested that Potato
Dextrose Agar (PDA) and Sabouraud Dextrose Agar (SDA)
are used as common fungal culture media, whereas LB broth
and LB agar media were used for primarily bacterial culture
preparation. Te Mandel and Weber media established
a cellulolytic fungi enzyme production medium which is still
used for cellulase production [95]. Te Mandel’s and Weber
media contains tween 80, (NH4)2SO4, K2HPO4,

MgSO4·7H2O, and the optimum pH was 4.8. Te medium’s
carbon source is microcrystalline cellulose, which contains
various salts as microelements. Iqbal et al. [96], reported that
Vogel’s nutrient mediumwas used for inoculum preparation
of fungi under SSF. Tus, studies focused on inoculum
media optimum compositions [14, 97–104] as well as the
nutrition, pH, temperature, and incubation times are es-
sential for inoculum growth and microbial fermentation
[14, 105, 106].

7. Substrates and Pretreatment Process

Cellulosic materials are the main component of cellulose,
whereas lignocellulose biomass is an inexpensive source for
cellulase production [54]. Tese materials indicate as sug-
arcane bagasse, aspen wood, wheat straw, and corn cobs, are
economical sources of carbon for cellulase production.
Liming and Xueliang [12] reported that corn cobs are used as
a residue for cellulase production that can efciently be
utilized by the fungus. Weeds can also be a low-cost sub-
strate as it grows naturally and is available in nature, whereas
vegetable fbers can be used as a renewable source for cel-
lulase enzyme [107]. Peels from Lufa cylindrica and Litchi
chinensis have also been used for cellulase production [108].
Before, using these substrates as energy source pretreatment
was necessary to improve enzyme hydrolysis rate and in-
crease yields of fermentable sugars [109]. Pretreatment
changes cellulosic biomass structures and increases the
availability of cellulase enzymes. Tere are four types of
substrate pretreatment processes used such as physical,
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chemical, physicochemical, and biological pretreatment
processes (Figure 3). In the physical method, the surface,
area, and pore size of lignocellulosic biomass are increased,
but the polymerization and crystallinity of cellulose are
decreased [109]. Chemical pretreatment is a less attractive
method where chemical materials such as sulfuric acids,
hydrochloric acid, ammonium, sodium, calcium, potassium,
methanol, acetone, ethanol, ethylene glycol, and chloride are
used. In the physiochemical method, high equipment and
temperature are needed with ammonia fber, steam, carbon
dioxide, and SPORL. Tese conventional methods required
high energy, nonpolluting equipment, and expensive re-
agents but biological pretreatment is environmentally
friendly and consumes less energy where required living
microorganisms such as fungi genera Pleurotus, Ceripor-
iopsis, Ceriporia, Pycnoporus, Cyathus, and Basidiomycetes
[110].

8. Fermentation

Fermentation is a crucial step of enzyme production that is
strongly infuenced by diferent chemical compositions and
chemical changes in the organic substrate through the ac-
tivity of microorganisms [101]. In fermentation, substrate
mass, heat, and oxygen transport are essential for microbial
growth and enzyme production [103, 105]. Submerged
fermentation (SmF) and solid-state fermentation (SSF) are

two important forms of fermentation, according to Saqib
et al. [111]. SmF involves microbial culture in the liquid
medium for the synthesis of desired products, such as
amylases and proteases [112].

SmF procedures are easily automated and do not sufer
from heat mass transfer. According to Babbar and Oberoi
[113], this approach has signifcant limitations because of the
medium’s high manufacturing cost and complexity. Solid-
state fermentation (SSF) is a competitive technology for
cellulase production because it has several benefts such as
high productivity, relatively high product concentrations,
improved monitoring, handling, and a less wealthy gener-
ation [114]. According to Tengerdy and Szakacs [115], the
cost of producing cellulase in SSF is tenfold lower than in
SmF, whereas John et al. [116], describe SSF as having direct
importance to industrial enzymes and their direct agro-
biotechnological applications as silage or feed additive,
lignocellulosic hydrolysis, and natural fber processing.
Teroascus aurantiacus also generated xylanase and CMCase
on SSF in various residues, according to Silva et al. [117].

9. Optimization of Parameters

9.1. Carbon andNitrogen Sources. Te researchers suggested
that a large amount of cellulase production depends on
a broad range of carbon sources [14, 118, 119]. González
et al. [120], reported that carbon sources are not only an
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Figure 2: In silico-based study on microbial cellulase enzyme for the understanding of its diferent properties.
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energy source for microorganisms but also an essential
inducer for cellulase production and diferent carbon
sources are disparity growth of an organism in diferent
media [121]. Tangnu et al. [122], reported carbon sources to
regulate the production of cellulase in fungi, where cello-
biose, lactose, and sophorose are efective carbon sources.
Cheng et al. [124] and Bhat and Bhat [125] reported that the
highest cellulase production was obtained on cellulose-
containing carbon sources. According to Margolles–Clark
et al. [126], sugar, glucose, fructose, dextrose, and carboxy
methyl cellulose were used to afect cellulase production in

microorganisms, and dextrose is the best carbon source for
fungi. Sophorose is a potent inducer of cellulase expression,
whereas sophorose in the medium by trans-glycosylation
could be the reason for the high levels of cellulase expression
[127].

9.2. Optimization of pH. pH is the most infuential factor
afecting the microbial community to produce enzymes and
strongly infuences microbial growth [128, 129]. Firestone
et al. [130], reported pH efects on multiple parameters and
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changed several factors that are hard to separate. Many
studies focused on optimizing the pH, which is an im-
portant factor for fungal growth and enzyme production
[131]. As a result, much efort has been expended in
attempting to maximize cellulase production through
optimal pH [132, 133]. Te biggest issue during cellulase
enzyme synthesis by diverse strains is controlling the
pH of the medium. Prasetyo et al. [134], found that
A. cellulolyticus has an ideal pH range for glucosidase of
5.5–6.0 and endoglucanase of 4.0, however Tangnu et al.
[122], reported cellulase production by microorganisms
in the pH range of 4.0–6.0. T. reesei, on the other hand,
increased glucosidase enzyme synthesis when the pH was
kept at 6.0. Hendy et al. [135], on the other hand, found
a considerable reduction of cellulase synthesis when
fermentation was undertaken at pH 5.0. Tese fndings
suggest that the ideal pH conditions for their perfor-
mance vary among species. As a result, a technique for
precise pH control based on the properties of individual
cellulase components must be developed, and a targeted
strain is required to increase overall cellulase production.

9.3. Optimization of Temperature. Enzyme production de-
pends on diferent parameters; optimum temperature is one
of them that infuences enzyme productivity. Rojey and
Monot [136] reported that optimum temperature is one of
the most signifcant factors for cellulase enzyme production.
Silva et al. [137], also reported cellulase production by
microorganisms was determined from 30°C to 80°C range,
with the highest production obtained at temperatures
30°C–40°C. When dairy manure is used as a medium, the
highest cellulose production is at 25.5°C. Mutant T. reesei
RUT-C30 produced the highest cellulase at a temperature of
30°C under solid-state fermentation [138], while T. reesei
HY07, isolated from corn stalk, produced cellulase at 30°C
[139].

9.4. Optimization of Incubation Day and Time. Nathan et al.
[140], reported that enzyme production by the fungi started
after 24 hours and the activities reached maximal levels
within fve to seven days of incubation. Acharya et al. [141],
reportedmaximum cellulase production byAspergillus Niger
occurred after fve days of fermentation, whereas Tricho-
derma reesei after six days in solid-state fermentation [142].
Darabzadeh et al. [143], reported that cellulase activity was
higher in three days compared to six days.

10. Cellulase Activity Assay

Te cellulase activity determination methods are including
the thread cutting [144] method, flter paper collapsing
method [145], a spectrophotometric method [146], fat band
method [147], branch and swain method [148], CMC
method [149], and cellulase activity liquefaction method
[150]. But Shuangqi et al. [151], reported that most new
methods are used to determine cellulase activity via the DNS
principle. Diferent cellulase assays are given in Figure 4.

11. Applications

Cellulase has been used in diferent industries for more than
30 years, such as pulp, paper, textile, bioethanol, wine,
brewery, food processing, animal feed, agricultural, carot-
enoid extraction, detergent, and waste management. Tese
industrial application sites are described in Table 2 and
Figure 1.

12. Conclusion

Te uses of cellulase in textiles are increasing day by day.
Tis enzyme is eco-friendly and has no pernicious efect on
the environment. Biotechnological applications of cellulases
make prospects for the hyper-production of cellulases by
genetically modifying fungal and bacterial strains. In the
future, thermo-stable, alkaline-resistant cellulases will be
made for industrial applications to attain high degradable
yields. As Cellulase enzyme has applications in diferent
industries, a bulk level of enzyme production is necessary.
Before, bulk processing optimization of diferent parameters
was vital as it afected microbial growth and production
level. Te world is dependent upon chemicals that negatively
afect the ecosystem. Tough lignocellulosic biomass is
available, the pretreatment and production process is
somewhat costly. So scientists are fnding the cheapest way
to produce cellulase enzymes to protect the environment
and humankind.
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Melanocarpus albomyces for textile treatment at neutral
pH,” Enzyme and Microbial Technology, vol. 34, no. 3–4,
pp. 332–341, 2004.
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[104] S. Ellilä, L. Fonseca, C. Uchima et al., “Development of a low-
cost cellulase production process using Trichoderma reesei
for Brazilian biorefneries,” Biotechnology for Biofuels, vol. 10,
no. 1, 2017.

[105] A. Ahamed and P. Vermette, “Efect of mechanical agitation
on the production of cellulases by Trichoderma reesei
RUT-C30 in a draft-tube airlift bioreactor,” Biochemical
Engineering Journal, vol. 49, no. 3, pp. 379–387, 2010.

[106] C. Li, Z. Yang, R. He Can Zhang, D. Zhang, S. Chen, and
L.Ma, “Efect of pH on cellulase production andmorphology
of Trichoderma reesei and the application in cellulosic
material hydrolysis,” Journal of Biotechnology, vol. 168, no. 4,
pp. 470–477, 2013.

[107] V. O. A. Tanobe, T. H. D. Sydenstricker, M. Munaro, and
S. C. Amico, “A comprehensive characterization of

chemically treated Brazilian sponge-gourds (Lufa cylin-
drica),” Polymer Testing, vol. 24, no. 4, pp. 474–482, 2005.

[108] S. Behera, R. C. Mohanty, and R. C. Ray, “Ethanol pro-
duction from mahula (Madhuca latifolia L.) fowers with
immobilized cells of Saccharomyces cerevisiae in Lufa
cylindrica L. sponge discs,” Applied Energy, vol. 88, no. 1,
pp. 212–215, 2011.

[109] M. Takada, “Features of promising technologies for pre-
treatment of lignocellulosic biomass,” Journal of Wood
Science, vol. 61, no. 6, pp. 673–686, 2015.

[110] X. Li, Y. Shi, W. Kong, J. Wei, W. Song, and S. Wang,
“Improving enzymatic hydrolysis of lignocellulosic biomass
by bio-coordinated physicochemical pretreatment—a re-
view,” Energy Reports, vol. 8, pp. 696–709, 2022.

[111] A. A. N. Saqib, M. Hassan, N. F. Khan, and S. Baig,
“Termostability of crude endoglucanase from Aspergillus
fumigatus grown under solid state fermentation (SSF) and
submerged fermentation (SmF),” Process Biochemistry,
vol. 45, no. 5, pp. 641–646, 2010.

[112] R. Subramaniyam and R. Vimal, “Solid State and Submerged
Fermentation for the Production of Bioactive Substances: A
Comparative Study,” Int J Sci Nat, vol. 3, no. 3, pp. 480–486,
2012.

[113] N. Babbar and H. S. Oberoi, “Enzymes in value-addition of
agricultural and agro-industrial residues,” Enzym. Value-
Addition Wastes, pp. 29–50, Nova Science Publishers,
Hauppauge, NY, USA, 2014.

[114] A. Cerda, T. Gea, M. C. Vargas-Garćıa, and A. Sánchez,
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