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Abstract: In this study, we evaluated the performance of the in-house developed rRT-PCR assay
for SARS-CoV-2 RNA targeting the envelope (E) and nucleocapsid (N) genes with internal control
as human RNase P. A total of 50 positive samples and 50 negative samples of SARS-CoV-2 were
tested by a reference kit at site 1 and a subset (30 positives and 16 negatives) of these samples are
tested blindly at site 2. The limit of detection (LoD) was calculated by using a replication-deficient
complete SARS-CoV-2 genome and known copy numbers, where Pseudo-virus samples were used to
evaluate accuracy. On site 1, among the 50 SARS-CoV-2 positive samples 24, 18, and eight samples
showed high (Ct < 26), moderate (26 < Ct ≤ 32), and low (32 < Ct ≤ 38) viral load, respectively,
whereas in site 2, out of 30 SARS-CoV-2 positive samples, high, moderate, and low viral loads were
found in each of the 10 samples. However, SARS-CoV-2 was not detected in the negative sample. So,
in-house assays at both sites showed 100% sensitivity and specificity with no difference observed
between RT PCR machines. The Ct values of the in-house kit had a very good correlation with the
reference kits. LoD was determined as 100 copies/mL. It also displayed 100% accuracy in mutant and
wild-type SARS-CoV-2 virus. This Bangasure™ RT-PCR kit shows excellent performance in detecting
SARS-CoV-2 viral RNA compared to commercially imported CE-IVD marked FDA authorized kits.

Keywords: Bangasure™; rRT-PCR; SARS-CoV-2; Nucleocapsid; LoD

1. Introduction

The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is redefining global public health. The disease was first reported in Wuhan,
China in December 2019 [1] and since then it has spread throughout the globe. Till now,
the world has lost almost 6.2 million lives to this virus. Bangladesh has reported its first
COVID-19 case in March 2020. Since then, the number of positive cases has increased at an
exponential rate. As of 13 April 2022, the country observed nearly 1.9 million positive cases
of COVID-19 with a cumulative death toll of nearly 30,000 [2,3]. Although vaccination
started throughout the country, the pandemic might be far away from over. Moreover,
the rise of new variants of concerns of SARS-CoV-2 with a higher transmissibility rate
is developing a critical challenge to the response strategy. With the continuous threat of
contagion, response measures need to evolve. Diagnostic testing is an important pillar of the
response measures in this fight against the COVID- 19 pandemic. Clinical symptoms cannot
exclusively define COVID-19 diagnosis. Moreover, 40–50% of the confirmed population
with COVID-19 are asymptomatic but can easily infect others [4]. Thus, testing will continue
to be important for identifying infected individuals and implementing quarantine and
treatment measures. It will also become increasingly more important for surveillance and
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screening efforts to monitor the effectiveness of control measures and carry out informed
public health and economic decisions.

Reverse transcriptase-polymerase chain reaction (rRT-PCR) is the gold standard in
the detection of SARS-CoV-2. Distinct rRT-PCR testing protocols were swiftly established
and made publicly available by the WHO [5] and by the Centre for Disease Control (CDC),
USA [6]. To date, Food and Drug Administration (FDA), USA issued over 200 Emergency
Use Authorization (EUA) COVID-19 molecular diagnostic kits. However, many of these
rRT-PCR kits have a varying range of lower limit of detection (LoD). Therefore, it is
necessary to lower the detection limit to ensure the accuracy and reliability of the test
results. Many factors might lead to false-negative results, especially low viral loads [7–9].
Further, the specificity of the confirmatory test relies on the probe-target sequence. The
commercially available rRT-PCR kits generally target nucleocapsid (N), envelope (E) or
RNA- dependent RNA polymerase (RdRp) gene of SARS-CoV-2 already published by
WHO. However, various mutations have been observed within these regions which might
hamper sensitivity [10,11]. Dorp et al. found that about 80% of SARS-CoV-2 genome
mutations occur in the spike (S) protein, and a large number of mutations are expressed in
the Orf1ab [12]. Besides that, Neha Kaushal et. al., studied that no mutational frequency
was found at E-gene of SARS-CoV-2 genome during the beginning months of the outbreak
in the USA [13]. An in-silico study was conducted by Changtai Wang, available from the
NCBI and GISAID database, and found that SARS-CoV-2 is relatively conserved, especially
in the E, 6, 7b regions where no mutation was found. Hotspot mutations in ORFs 1a, S, 8,
and the N region will cause changes in the amino acid sequences of these proteins, and
the effects of these mutations on viral replication, transmission, and the induced immune
responses need to be further investigated [14]. Moreover, several types of commercial
kits have been developed such as singleplex, duplex, or multiplex. The limitation of the
singleplex PCR protocol is the requirement to run three or more PCR reactions per sample
because all of the probes are labeled with the same dye. Besides that, singleplex uses
large amounts of reagents and reduces the laboratory testing capacity, especially in small-
scale facilities, which are crucial during the ongoing COVID-19 pandemic, particularly in
developing countries. To improve sensitivity, generally, in commercial kits, multiple probes
and primers are used in a multi-step PCR workflow.

Bangladesh, a country in Southeast Asia is a densely populated country with a devel-
oping economy. The public health of this country is severely challenged due to the limited
number of testing facilities and limited access to locally manufactured rapid diagnostic
tests [15]. The country is currently highly dependent on imported test kits which are a
major concern for the sustainability of response measures. Globally, there is a scarcity of the
resources required for the accurate diagnosis of SARS-CoV-2 and dependence on imported
kits develops a critical limiting factor for public health measures mainly due to limited
assurance for a continued supply. Further, it is difficult to ensure the high quality and
quantity of imported kits. Thus, local manufacturing of high-quality test kits might create
assurance of supply with self-reliance for diagnostic testing and offer the potential for price
rationalization and expanded access to diagnostics.

In this study, we have developed an in-house multiplex assay against SARS-CoV-
2 by targeting two viral gene targets from E and N2 genes named Bangasure™. The
primer and probe sequence for SARS-CoV-2 E and N2 gene was previously described
by Charité—Universitätsmedizin Berlin Institute of Virology, Berlin, Germany [16] and
CDC, USA [17] respectively. The Human RNase P gene was included as the internal
control [18]. This study determines the performance efficiency of this in-house assay at two
sites against two commercially imported CE-FDA approved rRT-PCR kits in determining
the SARS-CoV-2 among clinical specimens.
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2. Methods
2.1. Ethical Approval

Bangladesh Reference Institute for Chemical Measurements (BRiCM) in collaboration
with DNA Solution Ltd. (DNAS) carried out a subsequent comparative study of Banga-
sure™ rRT-PCR assay at two sites, DNAS as site-1 and BRiCM as site-2. All procedures
in the study were according to ethical standards of the Helsinki Declaration of 1975, as
revised in 2010 [19]. Clinical specimens were collected along with case record forms (CRF)
of participants were constructed as per Institute of Epidemiology, Diseases Control and
Research (IEDCR) from site 1 by DNAS as they have authorization for COVID-19 test by
the Government of Bangladesh. This is only a performance evaluation study of Banga-
sure™ RT-PCR kit in comparison with a CE-FDA marked reference kit by using secondary
data and without disclosing or using demographical data of a participant anywhere, so
there was no direct subject enrollment, but written consent was obtained from partici-
pants during completion of the CRF. Moreover, the study protocol was approved by the
institutional ethics review committee (Ref No#BRiCM2206). The Bangasure™ multiplex
rRT-PCR efficacy protocol was also accepted and published on the Clinicaltrials.gov site as
an NCT05190016 identification number.

2.2. Primer and Probes

Primer and probe sequences for SARS-CoV-2 viral target genes previously published
by CDC, USA (N1 and N2) [17] and Charité—Universitätsmedizin Berlin Institute of
Virology, Berlin, Germany (E and RdRP) [16] were considered for this study. Through
literature review, a multiplex combination of E, N2 along with internal control gene RNase
P was considered for the study [18]. The primer and probe were ordered from Integrated
DNA Technologies-IDT (Coralville, IA, USA). In this article, the N2 primer and probe will
be read as N only for future references.

2.3. Sample Collection and Preparation

In this study, Oro-pharyngeal swabs from suspected patients were collected in Govern-
ment approved virus transport medium (VTM) (Sansure Biotech. Inc., Changsha, China)
at the outdoor patient department (OPD) of the DNA Solution Ltd. (DNAS), Dhaka,
Bangladesh, and transported in a cool box to the laboratory for further processing. RNA
extraction was carried out using QIAamp® DSP Virus Spin Kit (Qiagen, Hilden, Germany)
according to the instruction manual. Briefly, 200 µL of VTM containing the oropharyngeal
swab was employed as starting material for viral RNA extraction using Silica-membrane
technology. The samples were lysed, binding to the silica-membrane column, washed
to remove contaminants, and eluted with RNase-free elution buffer. Fifty (50) positive
and fifty (50) negative SARS-CoV-2 RNA samples were selected by using as reference
commercial one-step real-time COVID-19 PCR kit, Novel Coronavirus (2019-nCoV) Nucleic
Acid Diagnostic Kit (Sansure Biotech Inc., Changsha, China) following manufacturer’s
instruction. The commercial real-time PCR kit uses PCR-Fluorescence probing technology
and targets two genes, ORF 1 ab and conserved coding regions of the nucleocapsid protein
N gene by Sansure Biotech kit. Positive internal control of human RNase P, along with
positive and negative control was used to nullify the presence of PCR inhibitors.

2.4. Optimization of Bangasure™ rRT-PCR Assay

Optimization of rRT-PCR reactions of the in-house assay was carried out using four
different Real-Time PCR instruments QuantStudio5 (Applied Biosystems, California, USA),
BioRad CFX96, and CFX Opus 96 (Bio-Rad Laboratories, Foster City, CA, USA). The
in-house assay was optimized via targeting E and N gene primer/probe published by
Charité—Universitätsmedizin Berlin Institute of Virology, Berlin, Germany and CDC, USA
respectively along with RNase P gene as an internal control [18]. The probes of E, N, and
RNase P were labeled with FAM, VIC, and Cy5 to improve multiplexing efficiency. The
cycling program was set according to the manufacturer’s instruction of commercial one-step
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master mix (New England Biolabs, Ipswich, MA, USA). Our optimized protocol consisted
of 20 µL reaction mixture containing 5 µL of 4×master mix (New England Biolabs, Ipswich,
MA, USA), 2 µL of primers/probes mix, 7 µL extracted RNA or template for positive
material (Integrated DNA Technologies-IDT, Coralville, IA, USA), and 6 µL of nuclease-free
water (New England Biolabs, Ipswich, MA, USA) with a filter combination of FAM (E), VIC
(N), and Cy5 (RNase P).

2.5. Limit of Detection (LoD) Determination

To determine LoD, AccuPlex™ SARS-CoV-2 Verification Panel containing replication-
deficient recombinant alphaviruses incorporating the full genome of SARS-CoV-2 in known
concentrations were ordered from Sera Care (Sera Care Life Sciences, Inc., Milford, MA,
USA). The reference materials contained a known concentration of virus particles which
were serially diluted starting from 105 Copies/mL to 1 Copy/mL. 5 replications of each
dilution series were tested at site 1. These positive materials undergo RNA extraction in the
same way as clinical specimens according to the previously described method. The LoD
was determined at the lowest concentration at which assay target specific for SARS-CoV-2
was positive for all 5 replicates.

2.6. Performance Evaluation of the In-House Assay

Performance evaluation between singleplex and multiplex assay was carried out using
synthetic positive control plasmids for E, N, and RNase P gene from IDT. The starting stock
for each plasmid control was 2 × 105 copies/µL. They were serially diluted to 2000, 200, 20,
and 2 copy copies/µL. Both singleplex and multiplex reactions of our E, N, and RNase P
gene-based assay were carried out against these synthetic positive plasmids. To perform
clinical evaluation, a total of 100 clinical oropharyngeal specimens were selected containing
an equal number of COVID-19 positive and negative samples. The samples (positive = 50
and negative = 50) were analyzed at site 1 using an in-house assay and a commercial
multiplex 1copy (1drop Inc., Gyeonggi-do, 13217, Republic of Korea) by a separate analyst
and Quant StudioTM 5 real-time PCR detection system (Applied Biosystems, Foster City,
CA, USA) where as a subset of those samples (positive = 30 and negative = 16) was
reanalyzed using the in-house assay at site 2 by CFX OPUS 96 (Biorad, Hercules, CA,
USA). In addition, the efficiency of the in-house one step SARS-CoV-2 real-time PCR
assay to detect the SARS-CoV-2 variants of concerns was determined using pseudo virus
specimens representing three prominent variants of concerns, i.e., B.1.1.7 (UK variant),
B.1.351 (South African variant), and P.1. (Brazilian variant), along with wild type (Wuhan)
variant (NC 045512) (Sera Care Life Sciences, Inc., Milford, MA, USA.) and a clinical
specimen (OM574617) containing the B.1.1.529 (Omicron variant) of concern.

2.7. Accelerated Stability Testing

According to the Arrhenius equation [20], accelerated testing was done to predict
stability at both sites independently. The in-house kit which includes Master mix, primers,
probes, controls were stored at 4 ± 2 ◦C both sites and additionally −20 ◦C for 5 weeks at
site 2 which were tested according to previously determined time points. Kits stored at
4 ± 2 ◦C were used to estimate the shelf life (Table S1) and kits stored at −20 ◦C were used
to evaluate the efficiency of the kit at the actual stored temperature. A panel of specimens
positive and negative for COVID-19 was stored as single separate aliquots and analyzed
at each time point to determine the in-house assay efficiency. Then results of the kit at
4 ± 2 ◦C at both sites were compared to the results obtained for the same lot of the kit
stored at −20 ◦C for 5 weeks in site 2.

2.8. Data Analysis

Samples were considered positive when the signal detected for E and/or N genes were
detected at Ct < 40. Samples were considered negative when viral target genes had a Ct > 40
or were not detected at all along with the amplified RP had Ct < 40. Specimens were labeled
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as invalid when both E and N genes along with RP signals were undetermined. Nuclease-
free water was also used as a no template control (NTC). Data analysis for the commercial
kits was performed according to the manufacturer’s instructions. The assay’s sensitivity,
specificity, positive predictive value, and negative predictive values were determined using
the online version 20.115 of MedCalc statistical software [21].

3. Results
3.1. Multiplexing of E, N, and RP Genes for Detection of SARS-CoV-2 RNA

Various rRT-PCR reactions with different combinations and concentrations of primer
and probes were carried out. Finally, an optimized multiplexing strategy targeting envelops
(E) and nucleocapsid (N) gene of SARS-CoV-2 along with a primer/probe set targeting the
human RNase P (RP) as the internal control was selected. The sequences of the primer/probe
considered for the in-house assay are summarized in Table 1.

Table 1. Primers and probes used for in-house assay of SARS-CoV-2.

Target Gene Primer/Probe Oligonucleotide Sequence (5′–3′)

E gene
E_SarbecoF_primer ACAGGTACGTTAATAGTTAATAGCGT
E_SarbecoR_Primer ATATTGCAGCAGTACGCACACA

Probe_E FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ1

N gene
N_cdcF_Primer TTACAAACATTGGCCGCAAA

N_cdcFR_Primer GCGCGACATTCCGAAGAA
Probe_N VIC-ACAATTTGCCCCCAGCGCTTCAG-BHQ1

RNase P
RP_F_Primer AGATTTGGACCTGCGAGCG
RP_R_Primer GAGCGGCTGTCTCCACAAGT

Probe_RNase P CY5-TTCTGACCTGAAGGCTCTGCGCG-BHQ-1

The optimized combination showed noteworthy amplification for each of the target
genes with the commercial one-step master mix (New England Biolabs, Ipswich, MA, USA)
in both singleplex and multiplex assay. Ct values from multiplex assay were found to be
increased by almost two units when compared with the singleplex assay (Figure 1). An
ideal baseline along with the optimum cycle of threshold and minimum background noise
was obtained in the following reaction protocol: 25 ◦C (30 s), 55 ◦C (10 min), 95 ◦C (1 min)
followed by 45 cycles of 95 ◦C (10 s), 60 ◦C (30 s). This optimized protocol and the multiplex
assay were compatible in Qunatstudio 5, BioRad CFX96, CFX Opus 96.
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3.2. Limit of Detection (LoD) Determination of the In-House Multiplex Assay

Replication deficient alphavirus incorporating the whole genome of SARS-CoV-2 was
used as reference material to determine LoD. The concentration of starting stock specimen
was 105 copies/mL which was serially diluted to 104, 103, 102, 10, and 1 copy/mL. Each
dilution series was replicated 5 times and tested against the in-house assay as well as the
two commercial rRT-PCR COVID-19 kits considered in this study. The LoD was defined
as the lowest concentration at which all replicates (five out of five) were positive for all
viral assay targets. The in-house assay showed LoD at 100 copy/mL which is similar to
the commercial rRT-PCR kit by Sansure Biotech Inc. However, the other commercial kit by
1drop Inc. (1copy) showed LoD at 1000 copy/mL. The data are summarized in Table 2.

Table 2. Determining the Limit of Detection (LoD) for the BangasureTM in-house assay and the two
commercial kits using specimens with known copies of replication-deficient alphaviruses incorporat-
ing the whole SARS-CoV-2 genome.

Virus
Copy/mL

BangasureTM Sansure Biotec. 1copy

Detection
Rate, %

Target Gene

Detection
Rate, %

Target Gene

Detection
Rate, %

Target Gene

E N ORF1ab N E N RdRp

Ct Value Ct Value Ct Value Ct Value Ct Value Ct Value Ct Value

Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV Mean %CV

100,000 100 26.35 2.87 26.83 1.22 100 27.64 0.48 26.46 0.24 100 28.31 0.83 27.77 0.27 28.99 0.34
10,000 100 30.01 0.65 30.21 0.62 100 30.81 0.21 29.56 0.45 100 31.54 0.87 31.34 1.07 32.35 0.81
1000 100 33.52 1.29 34.48 2.40 100 34.77 0.81 33.65 1.97 100 34.99 0.82 34.90 1.63 35.43 0.96
100 100 37.49 1.34 37.71 1.59 100 38.38 1.57 37.11 1.34 0 UND UND UND UND UND UND
10 0 UND UND UND UND 0 UND UND UND UND 0 UND UND UND UND UND UND
1 0 UND UND UND UND 0 UND UND UND UND 0 UND UND UND UND UND UND

UND = undetected.

3.3. Efficiency of In-House Multiplex rRT-PCR Assay

Both the singleplex and multiplex reaction of all the assay targets of the in-house assay
was carried out against a 10-fold serial dilution of synthetic positive control starting from
2000 copies/µL to 2 copies/µL. The results between singleplex and multiplex showed
concordant results with R2 > 0.99 (Figure 2). Next, replication-deficient enveloped viruses
harboring the mutation of three SARS-CoV-2 variants of concerns (B.1.1.7, B.1.351, and P.1)
along with the wild type (Wuhan) variant (NC_045512) were tested with the in-house assay.
A clinical specimen (OM574617) containing the variant of concern B.1.1.529 was also tested
with the in-house assay. All the viral assay targets were positive against the variants of
concerns, including the wild type (Figure 3).
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Figure 3. Detection of the SARS-CoV-2 variants of concerns by BangasureTM multiplex rRT-PCR
kit. (A) Wuhan variant (wild type), (B) UK Variant (B.1.1.7), (C) South African Variant (B.1.351),
(D) Brazilian variant (P.1) and (E) Omicron Variant (B.1.1.529) from clinical specimen (OM574617).

3.4. Performance Evaluation of In-House Assay Using Clinical Specimens

A total of 100 (positive = 50 and negative = 50) clinical specimens (oropharyngeal swab)
were considered using the Sansure Biotech PCR kit as a reference kit for the performance
evaluation. Among those, at site 1 within the positive samples, 24 samples had high SARS-
CoV-2 viral load (Ct < 26) while 18 and eight samples had moderate (26 < Ct ≤ 32) and low
viral (32 < Ct ≤ 38) load respectively according to the Sansure COVID-19 rRT-PCR kit. At
site 2, within the positive samples, 10 samples had high (Ct < 26), moderate (26 < Ct ≤ 32),
and low (32 < Ct ≤ 38) viral load in each group. Besides that, the COVID-19 status of all the
samples was blinded and was reanalyzed by the Bangasure™ in-house multiplex kit and
1copy COVID-19 rRT-PCR kits at site 1. The results were then compared with the Sansure
data. Both the in-house assays and the 1copy kit accurately identified all the positive and
negative samples for COVID-19 at both sites. Thus, in comparison to Sansure kit, the
in-house assay has 100% sensitivity, specificity, accuracy, positive prediction value, and
negative prediction value (Table 3A,B). The Pearson correlation analysis of E, N, and RNase
P gene individually for both positive and negative samples at two sites with the reference
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kits also indicated a good relationship (Figure 4). Additionally, when compared between
the two different RT PCR machines used at two different sites, we found 100% concordance,
though the Ct value for each gene at site 2 was found slightly increased (Figure 5).

Table 3. Validation and performance determination of the BangasureTM RT-PCR kit against two
commercially available CE-IVD and FDA approved COVID-19 qPCR diagnostic kits (A) in site 1 and
(B) in site 2.

(A)

Information of Clinical Samples Number of
Samples

Tested by
BangasureTM

RT-PCR Kit

Tested by Sansure
COVID-19

rRT-PCR Kit

Tested by
1copy 4plex Kit

Samples Tested
positive, n = 50

High (Ct < 26) 24 24 24 24

Moderate (26 < Ct ≤ 32) 18 18 18 18

Low (32 < Ct ≤ 38) 8 8 8 8

Total 50 50 50 50

Samples tested negative, n = 50 50 50 50 50

Sensitivity,%(95% CI) 100 (92.89–100) 100 (92.89–100) 100 (92.89–100)

Specificity,%(95% CI) 100 (92.89–100) 100 (92.89–100) 100 (92.89–100)

PPV,% 100 100 100

NPV,% 100 100 100

Accuracy,% (95% CI) 100 (96.38–100) 100 (96.38–100) 100 (96.38–100)

(B)

Information of Clinical Samples Number of
Samples

Tested by
BangasureTM

RT-PCR Kit

Tested by Sansure
COVID-19

rRT-PCR Kit

Sample Tested
positive, n = 30

High (Ct < 26) 10 10 10

Moderate (26 < Ct ≤ 32) 10 10 10

Low (32 < Ct ≤ 38) 10 10 10

Total 30 30 30

Sample tested negative,
n = 16 16 16 16

Sensitivity, % (95% CI) 100 (88.4–100) 100 (88.4–100)

Specificity, % (95% CI) 100 (79.4–100) 100 (79.4–100)

PPV, % 100 100

NPV, % 100 100

Accuracy, % (95%CL) 100 (92.29–100) 100 (92.29–100)
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Figure 5. Ct values of individual genes included in in-house kit on two different RT machines used
at two sites.

3.5. Determination of Assay Reproducibility and Stability

To determine the in-house assay reproducibility and stability, 10 clinical specimens
containing five positive and five negative samples for COVID-19 were used. The specimens
were aliquoted and kept at −80 ◦C to avoid repeated freezing and thawing. The in-
house assay was kept in 4 ± 2 ◦C for the accelerated stability testing in both the sites and
additionally −20 ± 5 ◦C in site 2 to mimic the practical scenario. The samples were tested
for five consecutive weeks and each time the tests were replicated five times. Each time, the
samples were detected with high precision with minimal deviation from the mean. Further,
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the coefficients of variation of the precision Ct were less than 5% in site 1 and less than 7%
in site 2 at all the storage temperatures for five consecutive weeks. Further from this study,
it can be predicted the in-house assay has a stability of at least five months at −20 ◦C. The
data are summarized in Table 4.

Table 4. Reproducibility of the BangasureTM multiplex RT-PCR kit in site 1 and site 2 over 5 week.

Site 1 Site 2

Ct Values for Multiplex PCR at 4 ◦C Ct Values for Multiplex PCR at 4 ◦C Ct Values for Multiplex PCR at −20 ◦C

E N RNase P E N RNase P E N RNase P

Week 1 21.91 22.75 23.99 23.96 21.52 27.24 25.61 21.52 23.73
Week 2 21.44 23.73 24.42 25.068 25.35 25.54 25.35 25.35 25.63
Week 3 23.50 23.66 24.76 25.938 24.77 25.94 25.96 24.78 25.84
Week 4 22.96 24.35 23.74 26.17 25.13 25.73 26.25 24.89 25.95
Week 5 23.44 24.31 23.71 27.256 25.37 26.23 26.89 25.12 25.75

Mean (SD) 22.65 (0.93) 23.76 (0.65) 24.12 (0.45) 25.68 (1.24) 24.43 (1.64) 26.14 (0.67) 26.01(0.59) 24.33 (1.58) 25.38 (0.93)
CV (%) 4.11 2.73 1.88 4.82 6.73 2.56 2.29 6.52 3.66

4. Discussion

Since the beginning of SARS-CoV-2 pandemic, laboratories around the globe faced
difficulty to expedite diagnostic tests due to a shortage of resources [22]. This was critical
for developing countries that were dependent on imports for diagnostic kits and reagents.
Bangladesh, a developing country in south-east Asia, is a densely populated county and
was able to cover only 0.66 per 1000 of its citizen under COVID-19 diagnosis [23]. One of
the major limiting factors for this poor diagnosis rate is the lack of control over the import
supply chain and the quality as well the quantity of the diagnostic kits. As diagnosis is
not the most important pillar of COVID-19 pandemic response, it is a critical priority to
develop domestically manufactured high volume quality kits. Around the globe, various
efforts are ongoing to develop accurate, reliable, and sustainable SARS-CoV-2 detection
methods with good sensitivity and specificity [24].

In this study, we have reported the development of a Bangasure™ in-house multiplex
rRT-PCR kit for SARS-CoV-2. Two groups of primer-probe sets (Charité/Berlin and CDC
designed Primer probe sets) which are recognized globally and used in many diagnostic
assays was primarily chosen to be evaluated. Evaluation of these primer probes to find
an optimum combination was conducted by thoroughly reviewing the literature [25–30].
WHO recommended the Charité/Berlin assay which detects two viral targets E and RdRp
gene [16]. Among these two targets, different studies revealed the sensitivity of the E primer-
probe is much higher than the RdRp primer-probe set [28,30]. Ct values of amplification
curves were found to be significantly higher when the RdRp primer-probe set was used
compared to other recognized primer-probe sets used in the study [30]. On the other hand,
comparing the Ct values and analytical sensitivity of N1 and N2 primer-probe sets, N2
performed slightly better than the N1 primer-probe set [28]. Moreover, the N1 probe has
a single nucleotide mismatch in more than 98% of Omicron variants which is a variant
of concern and the most predominant SARS-CoV-2 variant in the world right now [26].
After analyzing all these facts and following the recommendation of Nalla et al., 2020, the
E primer-probe of Charité/Berlin and N2 primer-probe designed by CDC was chosen for
in-house assay [28].

During the SARS-CoV-2 pandemic, testing demand increased exponentially. Single-
plex reactions using various target genes demand more thermal cycler, controls, reagents,
and labor which are a limiting factor in resource-poor countries. Studies showed that multi-
plexing through a single-tube reaction causes a negligible decrease in sensitivity compared
to singleplex reaction [31]. Further, mutations are a common possibility of false-negative
results. By targeting multiple SARS-CoV-2 viral assay targets, we might have reduced the
possibility of false-negative results that might have been raised through any polymorphism
within the primer binding site and template region. Thus, the development of a multiplex
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assay with high sensitivity and specificity will save time, simplify diagnosis, require less
reagent, and offer increased test volume which is critical for pandemic response.

In this study, the in-house assay showed great sensitivity and specificity in detecting
SARS- Cov-2 efficiently compared to two FDA-approved commercial nucleic acid amplifica-
tion kits for COVID-19 at both site trials. Though the Ct values for each gene in CFX Opus
96 RT PCR machine at site 2 was found slightly increased when compared with site 1 which
used Quantstudio 5 RT PCR machine this might be due to the time gap of analysis between
two sites (1 week interval). However, in terms of detection, there was no discordance
observed. Analytical sensitivity of the in-house kit was found to be 100 copy/mL, which
indicates that samples with low viral loads can be detected efficiently by the in-house kit.
The other two commercial RT-PCR kits named Sansure and 1copy showed analytical sensi-
tivity 100 copy/mL and 1000 copy/mL respectively. The nucleic acid extraction method,
primer-probe, and other reagents used in reaction might impact the sensitivity of real-time
PCR, and thus optimization of an assay is necessary [32]. The linearity (R2 > 0.99) we
observed in the standard curve and low LoD indicates that the reaction condition used
for the in-house assay might have achieved the required optimized condition. Further, all
commercial RT-PCR kits along with in-house assay showed amplification in all target genes
in both high and low positive samples, which demonstrates the high sensitivity of these
kits in a clinical set-up.

In this study, the same set of samples was tested to be compared against all kits, and
the initial volume of sample and elution volume were kept concordant for all the samples
in the nucleic acid extraction procedure. The extracted RNA was allocated and stored
at −80 ◦C to mitigate the fridge thaw cycle and prevent RNA degradation which might
influence the result. These executed procedures enabled us to evaluate the performance of
all kits more precisely.

The rise of various variants of concerns has increased the length of this pandemic.
These variants contain different mutations in their genome, for example, the “UK Variant”
B.1.1.7 contains 23 mutations in N, ORF1ab, ORF8, and S genes [33]. These genetic variations
can affect the sensitivity of diagnostic kits by affecting primer binding sites [34]. The in-
house assay was tested against different variants to evaluate the efficiency and found it
100% sensitive in detecting different variants, including B.1.1.7, B.1.351, P.1., and B.1.1.529.

As SARS-CoV-2 is a novel virus, the diagnosis is still in a developing phase and
different kits show fluctuation in performance. One major aspect of the diagnostic kit is
consistency [35]. To evaluate the consistency in a clinical set up, we performed an assay
reproducibility and kit stability test where the in-house kit exhibited identical results for
five consecutive weeks using a set of ten known samples for evaluation. The kit also
showed evidence of stability at 4 ◦C for the five-week time period in this study, which
indicates a sustainable performance of the in-house assay.

The principal feature of our developed in-house assay is that it can be performed in
different real-time PCR platforms at different sites. Therefore, this kit can be used in most
molecular laboratories for the diagnosis of SARS-CoV-2. Another aspect of the in-house kit
is that the master mix used in this assay contains Uracil-DNA glycosylase (UDG) which
contributes to eliminating carryover contamination [36]. The primer-probe used in this
study is well proven to be used against SARS-CoV-2 virus assay. Hence, we might conclude
that the in-house assay will be very specific with minimal chance of a false-positive result.

5. Conclusions

We developed an rRT-PCR kit to detect SARS-CoV-2 efficiently compared to kits that
are recognized globally. The assay developed in our study can provide a cost-effective
solution to support the mass diagnosis of SARS-CoV-2 and reduce the dependency on
foreign kits which will make the health care system of Bangladesh more sustainable in
during the COVID-19 pandemic.
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